SPECIFYING COMMERCIAL WINDOWS AND GLAZING SYSTEMS TO SUIT YOUR PROJECT
Presenters

- Steve Flaten, AIA
 Principal, Senior Architect

- Jack R. Rasmussen, AIA, NCARB
 Associate Principal, Senior Architect
 Enclosure Consulting & Forensics Manager
What We Are Going to Cover Today

- Differences in window types
- Performance criteria and grades
- Installation of windows
- Quality Assurance: Field Window testing
- Specifying Window Systems and Testing
- Examples – The Good, the Bad, the Ugly
Differences in Window Types

- Definitions
- Terminology
Fenestration: Openings in the building envelope, such as windows, doors, secondary storm products, curtain walls, storefronts, roof windows, tubular daylighting devices, sloped glazing and skylights, designed to permit the passage of air, light, or people.
Window: An operable or non-operable assembly that is installed in an opening within an exterior wall or roof intended to admit light or air to an enclosure, and is usually framed and glazed.

- Typically flashed opening controls water penetration directing back to exterior
- Wind load transferred through nailing flange or direct attachment through perimeter frame
- Typically pre-glazed factory unit
Definitions

- Windows – Sealed direct to weather barrier with perimeter sealant joint or tapes

Flanged Non-Flanged
Definitions

- Storefront: A non-residential, non-load-bearing assembly of commercial entrance systems and windows usually spanning between the floor and the structure above.
 - Control water by diverting it through the system and out through the sill.
 - Wind load transferred to perimeter where framing anchored to wall
 - Inside or outside glazed
Definitions

- Storefront
Definitions

- Storefront – water penetration diverted through glazing pocket
Definitions

- Storefront – water drains down glazing pocket along vertical mullion
Definitions

- Storefront – water is deposited into sub-sill
Definitions

- Storefront – water weeps out of sub-sill
Definitions

- Curtain Wall: A non-load bearing exterior wall cladding that is hung to the exterior of the building usually spanning floor to floor.
 - Each piece of glass is an individual self-contained zone and weeps water outside the main framing
 - Wind load transferred to vertical mullions which are anchored to structure at top, bottom, and intermediate points (typically floor line)
 - Inside or outside glazed
Definitions

- Curtain Wall
Definitions

- **Curtain Wall** – Vertical framing is a single extrusion, or 2-piece, with a thermal break nose gasket.
Definitions

- Curtain Wall – framing assembled
Definitions

- Curtain Wall – framing anchored to structure
Definitions

- Curtain Wall – sealants and gaskets at each glazed lite opening
Definitions

- Curtain Wall – glass and pressure plates installed
Definitions

- Curtain Wall – decorative snap covers and aesthetic sealant joint installed
Performance Criteria

- Uniform Load Deflection Test
- Uniform Load Structural Test
- Air Leakage Resistance
- Water Penetration Resistance
- Energy Performance: U-value
- Condensation Resistance Factor
- Operating Force (if applicable)
- Forced-Entry Resistance (if applicable)
Performance Criteria

- Uniform Load Deflection
 - Displacement due to flexure of a member under an applied load
- Uniform Load Structural Test:
 - 150% of the design pressure for windows and doors, and for uplift on unit skylights and roof windows.
 - 200% of the design pressure for download on unit skylights and roof windows.
Performance Criteria

- **Air Leakage**
 - The flow of air that passes through fenestration products.

- **Water Penetration**
 - Penetration of water beyond the plane intersecting the innermost projection of the test specimen, not including the interior trim and hardware, under the specified conditions of air pressure difference across the specimen.
Performance Criteria

- U-Factor
 - Code Requirements (Prescriptive)
 - Residential:

<table>
<thead>
<tr>
<th>Climatic Zone</th>
<th>Fenestration U-factor</th>
<th>Skylight U-factor</th>
<th>Glazed Fenestration SHGC</th>
<th>Ceiling R-Value</th>
<th>Wood Frame Wall R-Value</th>
<th>Mass Wall R-Value</th>
<th>Floor R-Value</th>
<th>Basement Wall R-Value</th>
<th>Slab R-value and Depth</th>
<th>Crawl Space Wall R-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.32</td>
<td>0.55</td>
<td>NR</td>
<td>49</td>
<td>20, 13+5</td>
<td>15/20</td>
<td>30e</td>
<td>15</td>
<td>10, 3.5 ft</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>0.32</td>
<td>0.55</td>
<td>NR</td>
<td>49</td>
<td>21</td>
<td>19/21</td>
<td>38e</td>
<td>15</td>
<td>10, 5 ft</td>
<td>15</td>
</tr>
</tbody>
</table>
Performance Criteria

- U-Factor
 - Code Requirements (Prescriptive)
 - Commercial:

TABLE C402.3 BUILDING ENVELOPE REQUIREMENTS: FENESTRATION

<table>
<thead>
<tr>
<th>CLIMATE ZONE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4 EXCEPT MARINE</th>
<th>5 AND MARINE</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U-factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed fenestration</td>
<td>0.50</td>
<td>0.50</td>
<td>0.46</td>
<td>0.38</td>
<td>0.38</td>
<td>0.36</td>
<td>0.29</td>
<td>0.29</td>
</tr>
<tr>
<td>Operable fenestration</td>
<td>0.65</td>
<td>0.65</td>
<td>0.60</td>
<td>0.45</td>
<td>0.45</td>
<td>0.43</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>Entrance doors</td>
<td>1.10</td>
<td>0.83</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>SHGC</td>
<td>SHGC</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.45</td>
</tr>
<tr>
<td>Skylights</td>
<td>U-factor</td>
<td>0.75</td>
<td>0.65</td>
<td>0.55</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>SHGC</td>
<td>SHGC</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>NR</td>
</tr>
</tbody>
</table>

NR = No requirement.
Performance Criteria

- U-Factor
 - Review Energy Code for requirements
 - Affected by climate zone
 - In MN – IECC or ASHRAE?
 - Remember, U-Factor is a maximum value – Lower is Better.
Performance Criteria

- Condensation
 - The deposition of moisture (liquid water or frost) on the surface of an object caused by warm, moist air coming in contact with a colder object.
Performance Criteria

- Condensation Resistance
 - CR vs. CRF – not “Apples to Apples”
Performance Criteria

- Condensation Resistance
 - CR vs. CRF – not “Apples to Apples”
 - Condensation Resistance (CR)
 - NFRC – National Fenestration Rating Council
 - Scale of 1 to 100 – higher is better
Performance Criteria

- **Condensation Resistance**
 - CR vs. CRF – not “Apples to Apples”
 - Condensation Resistance (CR)
 - NFRC – National Fenestration Rating Council
 - Scale of 1 to 100
 - Condensation Resistance Factor (CRF) – AAMA
 - AAMA – American Architectural Manufacturers Association
 - Scale of 30 to 80
 - Condensation Resistance Factor Tool
 - http://www.aamanet.org/crfcalculator/1/334/crf-tool
Performance Criteria

![CONDENSATION RESISTANCE FACTOR TOOL](image)

Simply enter the project specific environmental information in each of the three boxes requiring user data input:

- Outdoor Air Temperature (°F)
- Indoor Air Temperature (°F)
- Indoor Relative Humidity (percentage entered as a whole number)

Once all data has been entered, the suggested CRF is calculated and shown.

Outdoor Air Temperature (°F) **-15**

Recommend using ASHRAE’s 99.6% Heating DB climatic design data from closest weather station. Refer to Major U.S. Cities and State Capitals chart.

Indoor Air Temperature (°F) **72**
Indoor Relative humidity **30**

Percentage should be entered as a whole number.
Performance Criteria

CONDENSATION RESISTANCE FACTOR TOOL

Dewpoint Temperature 38.86
CRF 61.91
Outdoor Air Temperature (F) -15
Indoor Air Temperature (F) 72
Indoor Relative humidity 30

Recommend using ASHRAE’s 99.6% Heating DB climatic design data from closest weather station. Refer to Major U.S. Cities and State Capitals chart.

Percentage should be entered as a whole number.
Performance Criteria

- Operating Force
 - The force required to initiate or maintain a sash, leaf, or panel in motion in either the opening or closing direction.

- Forced-Entry Resistance
 - The ability of a window or door in the locked position to resist entry under specified load and conditions.
Performance Classes

- **R (Residential):** Commonly used in one- and two-family dwellings

- **LC (Light Commercial):** Commonly used in low-rise and mid-rise multi-family dwellings and other buildings where larger sizes and higher loading requirements are expected
Performance Classes

- CW (Commercial Window): Commonly used in low-rise and mid-rise buildings were larger sizes, higher loading requirements, limits on deflection, and heavy use are expected
Performance Classes

- **AW (Architectural Window)**: Commonly used in high-rise and mid-rise buildings to meet increased loading requirements and limits on deflection, and in buildings where frequent and extreme use of the fenestration product is expected.
Product Types
Product Types

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Awning, hopper, projected window</td>
</tr>
<tr>
<td>ATD</td>
<td>Architectural terrace door</td>
</tr>
<tr>
<td>BW</td>
<td>Basement window</td>
</tr>
<tr>
<td>C</td>
<td>Casement window</td>
</tr>
<tr>
<td>DASHD</td>
<td>Dual-action side-hinged door</td>
</tr>
<tr>
<td>DAW</td>
<td>Dual-action window</td>
</tr>
<tr>
<td>FD</td>
<td>Fixed door</td>
</tr>
<tr>
<td>FW</td>
<td>Fixed window</td>
</tr>
<tr>
<td>GH</td>
<td>Greenhouse window</td>
</tr>
<tr>
<td>H</td>
<td>Hung window</td>
</tr>
<tr>
<td>HE</td>
<td>Hinged rescue window</td>
</tr>
<tr>
<td>HP</td>
<td>Horizontally pivoted window</td>
</tr>
<tr>
<td>HS</td>
<td>Horizontal sliding window</td>
</tr>
<tr>
<td>J</td>
<td>Jalousie window</td>
</tr>
<tr>
<td>JA</td>
<td>Jal-awning window</td>
</tr>
<tr>
<td>LW</td>
<td>Limited water dual-action side-hinged door</td>
</tr>
<tr>
<td>DASHD</td>
<td>Limited water side-hinged door</td>
</tr>
<tr>
<td>LW SHD</td>
<td>Limited water side-hinged door</td>
</tr>
<tr>
<td>MA</td>
<td>Mullion assembly</td>
</tr>
<tr>
<td>POW</td>
<td>Parallel opening window</td>
</tr>
<tr>
<td>RWG</td>
<td>Roof window — glass glazed</td>
</tr>
<tr>
<td>RWP</td>
<td>Roof window — plastic glazed</td>
</tr>
<tr>
<td>SD</td>
<td>Sliding door</td>
</tr>
<tr>
<td>SHD</td>
<td>Side-hinged door</td>
</tr>
<tr>
<td>SHW</td>
<td>Side-hinged (inswinging) window</td>
</tr>
<tr>
<td>SKG</td>
<td>Unit skylight — glass glazed</td>
</tr>
<tr>
<td>SKP</td>
<td>Unit skylight — plastic glazed</td>
</tr>
<tr>
<td>SLT</td>
<td>Side lite</td>
</tr>
<tr>
<td>SP</td>
<td>Specialty product</td>
</tr>
<tr>
<td>SSP</td>
<td>Secondary storm product</td>
</tr>
<tr>
<td>TA</td>
<td>Tropical awning window</td>
</tr>
<tr>
<td>TDDCC</td>
<td>Tubular daylighting device — closed ceiling</td>
</tr>
<tr>
<td>TDDOC</td>
<td>Tubular daylighting device — open ceiling</td>
</tr>
<tr>
<td>TH</td>
<td>Top-hinged window</td>
</tr>
<tr>
<td>TR</td>
<td>Transom</td>
</tr>
<tr>
<td>VP</td>
<td>Vertically pivoted window</td>
</tr>
<tr>
<td>VS</td>
<td>Vertical sliding window</td>
</tr>
</tbody>
</table>
Performance Grades

- Gateway Performance Requirements: Each product type has a defined “gateway,” or minimum, set of primary requirements for the applicable product type. They are the minimum allowable performance levels that a gateway test specimen shall achieve, which translates into the Performance Grade.
Gateway Performance (Minimum)

- Class R & LC

<table>
<thead>
<tr>
<th>Performance Class</th>
<th>Minimum Performance Grade (PG)</th>
<th>Minimum design pressure (DP)</th>
<th>Minimum structural test pressure (STP)</th>
<th>Minimum water penetration resistance test pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>15</td>
<td>720 (15.04)</td>
<td>1080 (22.56)</td>
<td>140 (2.92)</td>
</tr>
<tr>
<td>LC</td>
<td>25</td>
<td>1200 (25.06)</td>
<td>1800 (37.59)</td>
<td>180 (3.76)</td>
</tr>
</tbody>
</table>

Note: The IP equivalents identified are for approximate reference only and do not in any way imply accuracy of the measurement or the equipment. See Clause 1.3. Precision and bias statements are provided in the applicable test methods referenced in this Standard/Specification.

- Class CW & AW

<table>
<thead>
<tr>
<th>Performance Class</th>
<th>Minimum Performance Grade (PG)</th>
<th>Minimum design pressure (DP)</th>
<th>Minimum structural test pressure (STP)</th>
<th>Minimum water penetration resistance test pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW</td>
<td>30</td>
<td>1440 (30.08)</td>
<td>2160 (45.11)</td>
<td>220 (4.59)</td>
</tr>
<tr>
<td>AW</td>
<td>40</td>
<td>1920 (40.10)</td>
<td>2880 (60.15)</td>
<td>390 (8.15)</td>
</tr>
</tbody>
</table>

Note: The IP equivalents identified are for approximate reference only and do not in any way imply accuracy of the measurement or the equipment. See Clause 1.3. Precision and bias statements are provided in the applicable test methods referenced in this Standard/Specification.
Optional Performance

Class R & LC

<table>
<thead>
<tr>
<th>Performance Class and optional Performance Grades (PG)</th>
<th>Design pressure (DP)</th>
<th>Structural test pressure (STP)</th>
<th>Water penetration resistance test pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Pa</td>
<td>Pa</td>
<td>Pa</td>
</tr>
<tr>
<td>20</td>
<td>940 (20.05)</td>
<td>1440 (30.08)</td>
<td>150 (3.13)</td>
</tr>
<tr>
<td>25</td>
<td>1290 (25.06)</td>
<td>1900 (37.59)</td>
<td>180 (3.76)</td>
</tr>
<tr>
<td>30</td>
<td>1440 (30.08)</td>
<td>2160 (45.11)</td>
<td>210 (4.59)</td>
</tr>
<tr>
<td>35</td>
<td>1660 (35.09)</td>
<td>2520 (52.62)</td>
<td>260 (5.43)</td>
</tr>
<tr>
<td>40</td>
<td>1920 (40.10)</td>
<td>2880 (60.15)</td>
<td>290 (6.06)</td>
</tr>
<tr>
<td>45</td>
<td>2160 (45.11)</td>
<td>3240 (67.67)</td>
<td>330 (6.39)</td>
</tr>
<tr>
<td>50</td>
<td>2400 (50.13)</td>
<td>3600 (75.19)</td>
<td>360 (7.52)</td>
</tr>
<tr>
<td>55</td>
<td>2640 (55.14)</td>
<td>3960 (82.71)</td>
<td>400 (8.35)</td>
</tr>
<tr>
<td>60</td>
<td>2880 (60.15)</td>
<td>4320 (90.23)</td>
<td>440 (9.19)</td>
</tr>
<tr>
<td>65</td>
<td>3120 (65.16)</td>
<td>4680 (97.74)</td>
<td>470 (9.82)</td>
</tr>
<tr>
<td>70</td>
<td>3360 (70.18)</td>
<td>5040 (105.24)</td>
<td>510 (10.65)</td>
</tr>
<tr>
<td>75</td>
<td>3600 (75.19)</td>
<td>5400 (112.78)</td>
<td>540 (11.28)</td>
</tr>
<tr>
<td>80</td>
<td>3840 (80.20)</td>
<td>5760 (120.30)</td>
<td>580 (12.11)</td>
</tr>
<tr>
<td>85</td>
<td>4080 (85.21)</td>
<td>6120 (127.82)</td>
<td>580 (12.11)</td>
</tr>
<tr>
<td>90</td>
<td>4320 (90.24)</td>
<td>6480 (135.34)</td>
<td>590 (12.71)</td>
</tr>
<tr>
<td>95</td>
<td>4560 (95.24)</td>
<td>6840 (142.84)</td>
<td>580 (12.11)</td>
</tr>
<tr>
<td>100</td>
<td>4800 (100.25)</td>
<td>7200 (150.38)</td>
<td>580 (12.11)</td>
</tr>
</tbody>
</table>

Notes:

1. The IP equivalents identified are for approximate reference only and do not in any way imply accuracy of the measurement or the equipment. See Clause 3.3. Precision and bias statements provided in the applicable test methods referenced in this Standard/Specification.

2. Where products are subjected to increased risks of wind-driven rain events, or for other reasons, the water penetration resistance test pressure specified in this table may be increased to a maximum of 720 Pa (~15.84 psf). Refer to AAMA TM 7.3 for guidance.
Optional Performance

- Class R & LC

Example:
R-PG30-H

Table 5.1
U.S. (only) optional Performance Grades (PG)
(See Clauses 0.2.5.1, 4.3.2.2, 4.4.3.3, 4.4.3.4, 4.4.3.5, 4.4.3.6, 9.3.4.2, and 9.3.4.3, and Table 0.1)

<table>
<thead>
<tr>
<th>Performance Class and optional Performance Grades (PG)</th>
<th>Design pressure (DP) Pa</th>
<th>Structural test pressure (SFP) Pa</th>
<th>Water penetration resistance test pressure Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>960</td>
<td>1440</td>
<td>150 (1.13)</td>
</tr>
<tr>
<td>25</td>
<td>1320</td>
<td>1880</td>
<td>180 (1.76)</td>
</tr>
<tr>
<td>30</td>
<td>1440</td>
<td>2160</td>
<td>220 (4.59)</td>
</tr>
<tr>
<td>35</td>
<td>1680</td>
<td>2520</td>
<td>260 (3.43)</td>
</tr>
<tr>
<td>40</td>
<td>1920</td>
<td>2880</td>
<td>290 (6.06)</td>
</tr>
<tr>
<td>45</td>
<td>2160</td>
<td>3240</td>
<td>330 (6.89)</td>
</tr>
<tr>
<td>50</td>
<td>2400</td>
<td>3600</td>
<td>360 (7.52)</td>
</tr>
<tr>
<td>55</td>
<td>2640</td>
<td>3960</td>
<td>400 (8.35)</td>
</tr>
<tr>
<td>60</td>
<td>2880</td>
<td>4320</td>
<td>440 (9.19)</td>
</tr>
<tr>
<td>65</td>
<td>3120</td>
<td>4680</td>
<td>470 (9.82)</td>
</tr>
<tr>
<td>70</td>
<td>3360</td>
<td>5040</td>
<td>510 (10.65)</td>
</tr>
<tr>
<td>75</td>
<td>3600</td>
<td>5400</td>
<td>540 (11.28)</td>
</tr>
<tr>
<td>80</td>
<td>3840</td>
<td>5760</td>
<td>580 (12.11)</td>
</tr>
<tr>
<td>85</td>
<td>4080</td>
<td>6120</td>
<td>580 (12.11)</td>
</tr>
<tr>
<td>90</td>
<td>4320</td>
<td>6480</td>
<td>580 (12.11)</td>
</tr>
<tr>
<td>95</td>
<td>4560</td>
<td>6840</td>
<td>580 (12.11)</td>
</tr>
<tr>
<td>100</td>
<td>4800</td>
<td>7200</td>
<td>580 (12.11)</td>
</tr>
</tbody>
</table>

Notes:
(1) The IP equivalents identified are for approximate reference only and do not in any way imply accuracy of the measurement or the equipment. See Clause 3.3. Precision and bias statements are provided in the applicable test methods referenced in this Standard/Specification.
(2) Where products are subjected to increased risks of wind-driven rain events, or for other reasons, the water penetration resistance test pressure specified in this Table may be increased to a maximum of 720 Pa (~16.84 psf). Refer to AAMA TIR 11 for guidance.
Optional Performance

- Class CW & AW

7 Class CW and AW windows and doors

Note: See Table 7.1 for gateway performance requirements and Clause 6 for side-hinged doors.

7.1 Class CW and AW requirements (specific to the U.S.)

Tables 7.1 and 7.2 provide requirements specific to the U.S.

<table>
<thead>
<tr>
<th>Performance Class and optional Performance Grades (PG)</th>
<th>Design pressure (DP)</th>
<th>Structural test pressure (STP)</th>
<th>Water penetration resistance test pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW</td>
<td>AW</td>
<td>Pa (-psf)</td>
<td>Pa (-psf)</td>
</tr>
<tr>
<td>35 —</td>
<td>1680 (35.09)</td>
<td>2520 (52.63)</td>
<td>260 (5.43)</td>
</tr>
<tr>
<td>40 —</td>
<td>1920 (40.10)</td>
<td>2880 (60.15)</td>
<td>290 (6.06)</td>
</tr>
<tr>
<td>45 45</td>
<td>2160 (45.11)</td>
<td>3240 (67.67)</td>
<td>330 (6.89)</td>
</tr>
<tr>
<td>50 50</td>
<td>2400 (50.13)</td>
<td>3600 (73.19)</td>
<td>360 (7.32)</td>
</tr>
<tr>
<td>55 55</td>
<td>2640 (55.14)</td>
<td>3960 (82.71)</td>
<td>400 (8.15)</td>
</tr>
<tr>
<td>60 60</td>
<td>2880 (60.15)</td>
<td>4320 (90.23)</td>
<td>440 (9.19)</td>
</tr>
<tr>
<td>65 65</td>
<td>3120 (65.16)</td>
<td>4680 (97.74)</td>
<td>470 (9.42)</td>
</tr>
<tr>
<td>70 70</td>
<td>3360 (70.18)</td>
<td>5040 (105.26)</td>
<td>510 (10.65)</td>
</tr>
<tr>
<td>75 75</td>
<td>3600 (75.19)</td>
<td>5400 (112.78)</td>
<td>540 (11.28)</td>
</tr>
<tr>
<td>80 80</td>
<td>3840 (80.20)</td>
<td>5760 (120.30)</td>
<td>580 (12.11)</td>
</tr>
<tr>
<td>85 85</td>
<td>4080 (85.21)</td>
<td>6120 (127.82)</td>
<td>580 (12.11)</td>
</tr>
<tr>
<td>90 90</td>
<td>4320 (90.23)</td>
<td>6480 (135.34)</td>
<td>580 (12.11)</td>
</tr>
<tr>
<td>95 95</td>
<td>4560 (95.24)</td>
<td>6840 (142.86)</td>
<td>580 (12.11)</td>
</tr>
<tr>
<td>100 100</td>
<td>4800 (100.25)</td>
<td>7200 (150.38)</td>
<td>580 (12.11)</td>
</tr>
<tr>
<td>— —</td>
<td>No limit*</td>
<td>No limit*</td>
<td>1.5 x design pressure (DP)</td>
</tr>
</tbody>
</table>

*There is no limit for optional Performance Grades (PG) in the AW Performance Class.

Notes:
1. The IP equivalents identified are for approximate reference only and do not in any way impair accuracy of the measurement or the equipment. See Clause 13. Precision and bias statements are provided in the applicable test methods referenced in this Standard/Specification.
2. Where products are subjected to increased risks of wind-driven rain events, or for other reasons, the water penetration resistance test pressure specified in this Table may be increased to a maximum of 720 Pa (~15.04 psf). Refer to AAMA TIR R13 for guidance.
Optional Performance

- Class R & LC

7 Class CW and AW windows and doors

Note: See Table 7.1 for gateway performance requirements and Clause 6 for side-hung doors.

7.1 Class CW and AW requirements (specific to the U.S.)

Tables 7.1 and 7.2 provide requirements specific to the U.S.

<table>
<thead>
<tr>
<th>Performance Class and optional Performance Grades (PG)</th>
<th>Design pressure (DP)</th>
<th>Structural test pressure (STP)</th>
<th>Water penetration resistance test pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW AW</td>
<td>Pa (-psf)</td>
<td>Pa (-psf)</td>
<td>Pa (Pa)</td>
</tr>
<tr>
<td>35</td>
<td>1680 (35.09)</td>
<td>2520 (52.63)</td>
<td>260 (5.34)</td>
</tr>
<tr>
<td>40</td>
<td>1920 (40.10)</td>
<td>2880 (60.15)</td>
<td>290 (6.06)</td>
</tr>
<tr>
<td>45</td>
<td>2160 (45.11)</td>
<td>3240 (67.62)</td>
<td>330 (6.89)</td>
</tr>
<tr>
<td>50</td>
<td>2400 (50.13)</td>
<td>3600 (75.19)</td>
<td>360 (7.32)</td>
</tr>
<tr>
<td>55</td>
<td>2640 (55.14)</td>
<td>3960 (82.71)</td>
<td>400 (8.15)</td>
</tr>
<tr>
<td>60</td>
<td>2880 (60.15)</td>
<td>4320 (90.23)</td>
<td>440 (9.19)</td>
</tr>
<tr>
<td>65</td>
<td>3120 (65.16)</td>
<td>4680 (97.74)</td>
<td>470 (9.42)</td>
</tr>
<tr>
<td>70</td>
<td>3360 (70.18)</td>
<td>5040 (105.26)</td>
<td>510 (10.65)</td>
</tr>
<tr>
<td>75</td>
<td>3600 (75.19)</td>
<td>5400 (112.78)</td>
<td>540 (11.88)</td>
</tr>
<tr>
<td>80</td>
<td>3840 (80.20)</td>
<td>5760 (120.30)</td>
<td>580 (12.11)</td>
</tr>
<tr>
<td>85</td>
<td>4080 (85.21)</td>
<td>6120 (127.82)</td>
<td>580 (12.11)</td>
</tr>
<tr>
<td>90</td>
<td>4320 (90.23)</td>
<td>6480 (135.34)</td>
<td>580 (12.11)</td>
</tr>
<tr>
<td>95</td>
<td>4560 (95.24)</td>
<td>6840 (142.86)</td>
<td>580 (12.11)</td>
</tr>
<tr>
<td>100</td>
<td>4800 (100.25)</td>
<td>7200 (150.38)</td>
<td>580 (12.11)</td>
</tr>
</tbody>
</table>

| — | No limit | No limit | 1.5 x design pressure (DP) | 580 (12.11) | 580 (12.11) |

* There is no limit for optional Performance Grades (PG) in the AW Performance Class.

Notes:

1. The IP equivalents identified are for approximate reference only and do not in any way imply accuracy of the measurement or the equipment. See Clause 7.3. Precision and bias statements are provided in the applicable test methods referenced in this Standard/Specification.

2. Where products are subjected to increased risks of wind-driven rain events, or for other reasons, the water penetration resistance test pressure specified in this Table may be increased to a maximum of 720 Pa (-11.04 psf). Refer to AAMA TIR A1 3 for guidance.
Optional Performance

- Class R & LC

<table>
<thead>
<tr>
<th>Performance Class</th>
<th>Positive test pressure</th>
<th>Maximum allowable leakage</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (jalousie windows only)</td>
<td>75 (1.57)</td>
<td>6.0 (1.18)</td>
</tr>
<tr>
<td>R, LC (except jalousie windows)</td>
<td>75 (1.57)</td>
<td>1.5 (0.30)</td>
</tr>
</tbody>
</table>

Note: The IP equivalents identified are for approximate reference only and do not in any way imply accuracy of the measurement or the equipment. See Clause 1.3. Precision and bias statements are provided in the applicable test methods referenced in this Standard/Specification.

- Class CW & AW

<table>
<thead>
<tr>
<th>Performance Class</th>
<th>Positive test pressure</th>
<th>Maximum allowable leakage</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW</td>
<td>75 (1.57)</td>
<td>1.5 (0.30)</td>
</tr>
<tr>
<td>AW (sliding seal products)</td>
<td>300 (6.27)</td>
<td>1.5 (0.30)</td>
</tr>
<tr>
<td>AW (compression seal and fixed products)</td>
<td>300 (6.27)</td>
<td>0.5 (0.10)</td>
</tr>
</tbody>
</table>

Note: The IP equivalents identified are for approximate reference only and do not in any way imply accuracy of the measurement or the equipment. See Clause 1.3. Precision and bias statements are provided in the applicable test methods referenced in this Standard/Specification.
Product Labeling

- Photo of Label from a recent field test
Product Labeling

ENERGY STAR® Certified in Highlighted Regions
Certifié ENERGY STAR dans les régions en surbrillance

Canada
energystar.gc.ca

U.S. / É.U.
energystar.gov

Do not remove until final code inspection. Save for future reference.

ER/RE24

DO NOT REMOVE UNTIL FINAL INSPECTION/NE PAS RETIRER AVANT L’INSPECTION FINALE
Product Labeling

![Product Labeling Image](image)

Energy Performance Ratings

<table>
<thead>
<tr>
<th></th>
<th>U-Factor</th>
<th>Solar Heat Gain Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.28</td>
<td>0.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional Performance Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visible Transmittance</td>
</tr>
<tr>
<td>0.56</td>
</tr>
</tbody>
</table>

Manufacturer stipulates that these ratings conform to applicable NFRC procedures for determining whole product performance. NFRC ratings are determined for a fixed set of environmental conditions and specific products. NFRC does not recommend any product and does not warrant the suitability of any product for any specific use. Consult manufacturer's literature for more product performance information.

www.nfrc.org
Product Labeling

![Product Labeling Image]

Standards and Ratings

<table>
<thead>
<tr>
<th>Standard</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAMA/WDMA/CSA 101/1.S.2/A440-11</td>
<td>Class LC-P630 Size Tested: 77.5 x 95.5 in DP+30/-30</td>
</tr>
<tr>
<td>AAMA/WDMA/CSA 101/1.S.2/A440-08</td>
<td>Class LC-P630X Tested in DP +30/-30 psf</td>
</tr>
<tr>
<td>AAMA/WDMA/CSA 101/1.S.2/A440-11</td>
<td>Class CLASS1920Pa Size Tested 1968.5x2425.7mm Positive/Negative DP 1920Pa</td>
</tr>
<tr>
<td>A44051-09</td>
<td>Water Penetration Test Pressure = 290Pa Air Infiltration/Exfiltration: Fixed</td>
</tr>
</tbody>
</table>

Manufacturer stipulates certification to the following standards.

- Hallmark Certified
- www.wdma.com

Specifying Window Systems

- Identify which type or types of windows required on the project.
 - Residential or Commercial Application
 - Window, Storefront, Curtain wall
 - Materials: Wood, PVC, Fiberglass, Aluminum, etc
 - Operation: Fixed, hung, casement, awning, etc
Specify Window Systems

- What is the Design Pressure requirement?
 - Correlates to the Performance Grade
 - Consult with the Building Code and Structural Engineer

 Example:
 Wind Loads
 ASCE 7-10 Envelope Procedure Parameters
 Exposure B
 Ultimate design wind speed 115 MPH (3 second gust)
 Nominal design wind speed 90 MPH
 Risk Category II
 Wind Directionality Factor (Kd) 0.85
 Topographic Factor (Kzt) 1.0
Specifying Window Systems

- Identify the Performance Class Required
 - Residential (R)
 - Light Commercial (LC)
 - Commercial Window (CW)
 - Architectural Window (AW)
Specifying Window Systems

- MasterFormat, Division 08 – Openings
 - 08 43 00 – Storefronts
 - 08 44 00 – Curtain Wall and Glazed
 - 08 50 00 – Windows (Metal, Wood, Composite)
Specifying Window Systems

- Specification – Design Requirements
 - Typically in Part 1 of Specification Section
 - Design Requirements: Design exterior systems to withstand:
 - Design wind pressure in accordance with [ASCE 7,] [Building Code,] with maximum allowable deflection of [L/175,] tested in accordance with ASTM E330, but not less than [30] psf
 - Grade: AAMA/WDMA/CAS 101/I.S.2/A440 requirements for specific window type:
 - Performance Grade: [CW-PG50-F] [Equivalent to or greater than the design wind load.]
 - Performance Class (PC): [R], [LC], [CW], [AW]
 - Note: [Values] subject to change based on requirements.
Specifying Window Systems

- Specification – Design Requirements
 - Design Requirements Continued:
 - Movement caused by an ambient temperature range of [120] degrees F and a surface temperature range of [160] degrees F.
 - Movement between system and adjacent construction.
 - Dynamic loading and release of loads.
 - Deflection of supports.
 - Overhead structure deflection of [1/2] inch.

Note: [Values] subject to change based on requirements.
Specifying Window Systems

- Specification – Performance Requirements
 - Typically in Part 1 of Specification Section
 - Performance Requirements:
 - Uniform structural loading: No glass breakage or permanent damage to fasteners or system components, tested to ASTM E330 at 1.5 times design pressure.
 - Thermal transmittance due to conduction (Uc): Maximum [0.36] BTU/(hr sq ft deg F) tested to AAMA 1503.
 - Condensation resistance factor (CRF): Minimum [60,] tested to AAMA 1503.

Note: [Values] subject to change based on requirements.
Specifying Window Systems

- Specification - Performance Requirements
 - Performance Requirements Continued:
 - Air infiltration, tested to ASTM E283.
 - [0.06] CFM per square foot of fixed area at static pressure differential of [6.24] PSF.
 - Water infiltration: No uncontrolled water leakage, tested to ASTM E331 at minimum test pressure of [8.0] PSF.
 - Operating Force: Based on PC & PG
 - Forced Entry: Based on PC & PG

Note: [Values] subject to change based on requirements.
Specifying Window Systems

- Specification (Product)
 - Typically in Part 2 of Specification Section
 - If specifying a Basis-of-Design Product, confirm that the Design and Performance Requirements of the specified product are the same as the Design and Performance Requirements
 - Do not specify different Design and Performance Requirements than a Basis-of-Design product’s laboratory tested rating as it creates confusion for the Contractor(s) and the bids will not be comparable.
Proper Window Installation

- **Flashings**
 - Generically uses term “flashing” on all sides (2012 IBC 1405.4 & 1405.13)
 - “Pan Flashing” that is sealed or sloped (2012 IRC R703.8.1)
- **Follow Manufacturer’s Installation Instructions**
- **Drip/head flashing**
- **Tapes/sealants - types, compatibilities, weather conditions affecting installation, etc**
- **Wall drainage**
Placement of Windows

- There are many opinions on the proper location of window placement.
 - Like these guys
Recommendations

- Most important aspect of window detailing: The primary sealant joint of the window must be in direct contact with the water-resistive barrier and/or flashings.
“Technical Assistance” from Manufacturers
Recommendations

- Specify that one of the required Shop Drawing Submittals is the *current* installation instructions from the manufacturer at the time of construction.

- Place that documents in your project file and save it for the life of your files. These change frequently and you may never see it again.

- Follow the installation directions step for step.

- These instructions were often stuck to the window, and were brief. Now we have seen some that are dozens of pages long. THINGS HAVE CHANGED!!!
What Can Go Right?

- The Good.....
 - Know the specific installation details of the window and weather barrier manufacturers.
 - Specify Mock-ups – get the installation right from the start.
 - Include the manufacturer of the window and water-resistive barrier.
Mock-up Example: Step-by-Step
Quality Assurance: Field Window Testing
Field Window Test Types

- AAMA 501.2: *Quality Assurance and Diagnostic Water Leakage Field Check of Installed Storefronts, Curtain Walls and Sloped Glazing Systems*

 A water spray quality check to reveal leaks in non-operable glazing systems that includes gaskets, sealants, perimeter caulking, splices and frame joinery intersections.
Field Window Test Types

- AAMA 501.2
Field Window Test Types

- AAMA 502: *Voluntary Specification for Field Testing of Newly Installed Fenestration Products*
 - Performance testing of the unit for air infiltration and water penetration utilizing a temporary pressure chamber.
 - Utilized on fixed and operable specimens
Field Window Test Types

- **AAMA 503: Voluntary Specification for Field Testing of Newly Installed Storefronts, Curtain Walls and Sloped Glazing Systems**
 - Similar to AAMA 502, but specific to Storefronts, Curtain Walls and Sloped Glazing Systems (ie skylights).
Field Window Test Types

- AAMA 502 & AAMA 503 reference the following ASTM test methods:
 - E783: *Standard Test Method for Field Measurement of Air Leakage Through Installed Exterior Windows and Doors*
 - E1105: *Standard Test Method of Water Penetration of Installed Exterior Windows, Skylights, Doors, and Curtain Walls, by Uniform or Cyclic Static Air Pressure Difference*
AAMA 502 or 503

FIGURE 1: Test Chamber
AAMA 502 or 503
AAMA 502 or 503

- ASTM E783: Standard Test Method for Field Measurement of Air Leakage Through Installed Exterior Windows and Doors Field test allows an increase of 1.5 times that allowed in the NAFS.
 - For example, the R-PG30-H we looked at earlier is rated at 0.30 cfm/sf at 1.57 psf. The field test is allowed 0.45 cfm/sf at 1.57 psf.
AAMA 502 or 503

- ASTM E1105: Standard Test Method for Field Determination of *Water Penetration* of Installed Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform or Cyclic Static Air Pressure Difference
 - Field test allows an reduction of pressure to 2/3 that allowed in the NAFS. For example, the R-PG30-H we looked at earlier is rated at 4.59 psf. The field test is allowed a pressure reduction to 3.06 psf.
Quality Assurance: Field Window Testing

- What constitutes “passing”?

- Test standards do not ask for results in “Pass” vs. “Fail”, rather in “Controlled” vs. “Uncontrolled” water penetration.
Quality Assurance: Field Window Testing

- **ASTM E1105 Definition**
 - Water penetration: Penetration of water beyond a plane parallel to the glazing (the vertical plane) intersecting the innermost projection of the test specimen, not including interior trim or hardware, under the specified conditions for air pressure difference across the specimen.

![Figure 1: Test Chamber](image-url)
Quality Assurance: Field Window Testing

- AAMA 502-12 requires any observed water penetration to be “controlled”.
 - Water penetration *attributable to the surrounding condition* shall be defined as the presence of *uncontrolled water which did not originate from the fenestration product or the joint between the fenestration product specimen and the wall/roof*.
 - Water penetration *attributable to the perimeter joint* shall be defined as *uncontrolled water that indisputably originates at the joint*.
 - Water penetration *attributable to the fenestration product specimen* shall be defined as the *penetration of uncontrolled water beyond a plane parallel to the innermost edges of the product* and that indisputably originates from the fenestration product.
Quality Assurance: Field Window Testing

- AAMA 502-90 requires any observed water penetration to be “controlled”. *Controlled* water is defined as:
 - Windows: Water contained or drained back to the exterior, or the collection of up to one-half ounce of water on top of an interior horizontal window surface that does not spill onto adjacent finishes or materials is acceptable.
 - Exterior Panning, Subframe, Flashing, and Perimeter Joints: The penetration of water through the exterior construction is acceptable providing the installed window system is designed to collect and drain this leakage to the exterior, i.e. subsill, drained flashing, etc, without damage to the adjacent construction.
 - A small amount of percolation (less than 10 drops) through meeting rails or over sills that is visible on adjacent finishes or materials.
Quality Assurance: Field Window Testing

- AAMA 503-14 requires any observed water penetration to be “controlled”.
 - Water penetration *attributable to the surrounding condition* shall be defined as the presence of *uncontrolled water which did not originate from the product specimen or the joint between the fenestration product specimen and the wall/roof*.
 - Water penetration *attributable to the perimeter joint* shall be defined as *uncontrolled water that indisputably originates at the joint*.
Quality Assurance: Field Window Testing

- AAMA 503-14 requires any observed water penetration to be “controlled”.
 - Water penetration attributable to the fenestration product specimen shall not be as defined in ASTM E1105.
 - Water leakage shall be defined as any water not contained in an area with provisions to drain to the exterior or the collection of more than 14 grams or 0.5 ounces of water on an interior horizontal framing member surface.
 - Any water present shall not extend beyond a plane parallel to the glazing (the vertical plane) intersecting the innermost projection of the test specimen, not including interior trim or hardware.
Examples of Water Penetration
Window Testing: Water Penetration
Specifying Quality Assurance Field Window Testing

- Identify which test, or combination of tests, is desired.
 - AAMA 501.2 – Field Check
 - AAMA 502 – Performance Test
 - AAMA 503 – Performance Test
Select number of tests desired for representative sampling

- AAMA 501.2 – Field Check
 - 100 sq. ft. min. in size and shall include perimeter caulking, typical splices, frame intersections, and if applicable, at least two entire vision lites and two entire spandrel lites containing an intermediate vertical member and an intermediate horizontal member.
 - Recommended testing intervals at 5%, 25%, 50%, and 90% completion
 - Testing should be performed as soon as possible and prior to the installation of drywall or interior finish wall materials.
 - No operable sections are applicable to this test method.
Select number of tests desired for representative sampling

- AAMA 502 – Field Performance Test
 - Three (3) tests are standard recommended test quantity
 - Recommended testing intervals at 5%, 50%, and 90% completion.
 - Testing should be performed as soon as possible and prior to the installation of drywall or interior finish wall materials.
 - Operable sections are applicable to this test method.
 - Some Architects specify based on a percentage of the total windows.
 - 1-3% of total windows installed
 - Understand the cost implications to the Owner of large number of tests
Specifying Quality Assurance Field Window Testing

- Select number of tests desired for representative sampling
 - AAMA 503 – Field Performance Test
 - Size and location shall be selected by Architect and clearly identified in the Construction Documents
 - If not selected, 100 sq. ft. min. in size and shall include perimeter caulking, typical splices, frame intersections, and if applicable, at least two entire vision lites and two entire spandrel lites containing an intermediate vertical member and an intermediate horizontal member.
 - Recommended testing intervals at 5%, 25%, 50%, and 90% completion
 - Testing should be performed as soon as possible and prior to the installation of drywall or interior finish wall materials.
 - Operable sections are applicable to this test method.
 - If section of storefront or curtain wall, air test may not be possible or practical due to continuous nature of test specimen.
Part 3 – Field Quality Control

- Newly installed fenestration shall be field tested in accordance with [AAMA 501.2] [AAMA 502] [AAMA 503]
- Test [three] [] of the fenestration product specimens after the products have been completely installed.
 - Indicate on drawings the location and/or size of desired specimens.
- Test fenestration product specimen at intervals of 5%, [25%], 50%, and 90% of completion.
- Air leakage and water penetration resistance shall be conducted at pressures and rates according to the specified Performance Grade.
 - Architect can exceed water penetration definition and require “no water penetration allowed” in the specifications. Otherwise, definitions in test method applies.
Specifying Quality Assurance Field Window Testing

Part 3 – Field Quality Control

- If test area or unit fails to meet specified air or water infiltration testing:
 - Contractor to submit proposed remedial work to Architect
 - Contractor to complete remedial work
 - Coordinate repeat testing.
 - When test results meet specified requirements, incorporate remedial work into other work on the Project.
 - Architect to select [one] additional area or unit for field testing to confirm effectiveness of remedial work on other specimens.

- Field testing will be provided by:
 - AAMA Accredited Testing Laboratory retained by the [Owner] [General Contractor] [Window Installer].
 - If hired by Owner, initial tests to be paid for by Owner. If testing fails to meet the specified requirements, additional and retesting will be deducted from the contract by Change Order.
What Can Go Wrong?

-The Bad and the Ugly

- Water penetration that leads to:
 - Deterioration
 - Damage
 - Rotting of the wall system components.
Sill flashing not integrated
Reverse lap of WRB under window
Head/drip flashing too short
Sealant cohesive failure – field mull prone to leak
No head/drip flashing
No sill flashing
Sealant adhesion failure
Missing water-resistive barrier
Sheathing damage below windows
Sill flashing applied after window installed and window weeps into wall
Single-wythe wall – water penetrates around unsealed head flashing
Download Presentation @

Steve Flaten, AIA
Principal, Senior Architect
952.995.2348
sflaten@braunintertec.com

Jack R. Rasmussen, AIA, NCARB
Associate Principal, Senior Architect
Enclosure Consulting & Forensics Manager
952.393.5217
jrasmussen@braunintertec.com